Development of a procedure and apparatus to quantify pathogen reduction throughout an intermittent biosand filter

UNIVERSITY OF PUERTO RICO – Mayagüez Campus

Joann M. Rodríguez Suárez, BSChE
Belinda Hernández
Pedro J. Tarafa, PhD, PE
Dr. Christopher Papadopoulos, PhD
Dr. Sangchul Hwang, PhD
Duchity, Haiti
Duchity, Haiti – Water Quality
Intermittent biosand filter

- Adaptation of a traditional slow sand filter
- Designed by Dr. David Manz (1991)
- Implemented in more than 70 countries
- Appropriate technology
 - Low cost
 - Materials availability
 - Operational simplicity

Diagram details:
1. Reservoir Zone
2. Standing water Zone
3. Biological Zone
4. Non-Biological Zone
5. Gravel Zone

Dimensions:
- 304 mm x 108 mm
- 158 mm
- 940 mm
- 543 mm
- 50 mm
- 66 mm

Source: CAWST Manual 2009
Biosand filter operation

- Biosand filter mechanisms
 - Mechanical trapping
 - Adsorption
 - Biological Activity
 - Lack of oxygen and nutrients

(1) CAWST Manual 2009
Technology comparison

- **Intermittent biosand filter**
 - Intermittent flow
 - No maintenance cost
 - Household level
 - Simple operation

- **Traditional slow sand filter**
 - Continuous flow
 - Municipal level
 - Volume of treated water
Objectives

- Evaluate the impact and contribution of microbial activity and dissolved oxygen concentration in pathogen reduction as functions of medium depth and time.
 - Understand the filter mechanisms interaction
 - Improve filter design
 - Optimize materials use
Table 1. Bench scale dimensions

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter [m]</td>
<td>0.10</td>
</tr>
<tr>
<td>Total height [m]</td>
<td>1.0</td>
</tr>
<tr>
<td>Outlet tube</td>
<td></td>
</tr>
<tr>
<td>Inside diameter [mm]</td>
<td>9.53</td>
</tr>
<tr>
<td>Outside diameter [mm]</td>
<td>6.35</td>
</tr>
<tr>
<td>Tube height [mm]</td>
<td>695</td>
</tr>
<tr>
<td>Effective volume [mL]</td>
<td>2,280</td>
</tr>
</tbody>
</table>

Table 2. Haiti local sand

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size [mm]</td>
<td>0.7 - 0.1</td>
</tr>
<tr>
<td>Effective size [mm]</td>
<td>0.13</td>
</tr>
<tr>
<td>Uniformity Coefficient</td>
<td>2.5</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td>SiO<sub>2</sub></td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO<sub>3</sub></td>
</tr>
</tbody>
</table>
Table 3. Sampling ports dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring diameter [mm]</td>
<td>50</td>
</tr>
<tr>
<td>Wall distance [mm]</td>
<td>25.4</td>
</tr>
<tr>
<td>Tube</td>
<td></td>
</tr>
<tr>
<td>Outside diameter [mm]</td>
<td>9.53</td>
</tr>
<tr>
<td>Inside diameter [mm]</td>
<td>6.35</td>
</tr>
<tr>
<td>Perforations quantity</td>
<td>5</td>
</tr>
<tr>
<td>Mesh</td>
<td></td>
</tr>
<tr>
<td>Opening size [μm]</td>
<td>105</td>
</tr>
</tbody>
</table>
Methodology

2.3 L Solution
796 mg/L NaCl

Solution addition

Sampling Port 1

Sampling Port 2

Sampling Port 3

Sampling Outlet

Multi-parameter PCSTestr 35 Oakton

Conductivity measurements

New batch addition
Results: Tracer test
Results: Tracer Test

Morrill Dispersion Index

\[MDI = \frac{T_{90}}{T_{10}} \]

Mixture

Plug Flow
Volumetric flow rate and hydraulic head

Volumetric flow rate as function of time in a biosand filter

\[y = 101.71e^{-0.052x} \]

Hydraulic head as function of time in a biosand filter

\[y = 33.143e^{-0.073x} \]
Volumetric flow rate and hydraulic head

Volumetric flow rate as function of the hydraulic head in a biosand filter

\[y = 4.2028x + 2.7766 \]

\[R^2 = 0.9968 \]
Future Work

- Develop concentration profiles as a function of depth and time
 - Total coliform
 - *Enterococcus spp.*
 - Dissolved oxygen

- Evaluate the impact in the bacteriological quality of the biosand filter effluent with a modified zeolite treatment.

- Conduct a person-to-person survey in Duchity, Haiti.

Table 4. Preliminary Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Treatment time</th>
<th>E. coli CFU/100 mL</th>
<th>Total coliform CFU/100 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>0 hr</td>
<td>3,100</td>
<td>66,900</td>
</tr>
<tr>
<td>Control</td>
<td>1 hr</td>
<td>3,600</td>
<td>56,500</td>
</tr>
<tr>
<td></td>
<td>2 hr</td>
<td>3,400</td>
<td>53,700</td>
</tr>
<tr>
<td>Non-modified zeolite</td>
<td>1 hr</td>
<td>400</td>
<td>13,000</td>
</tr>
<tr>
<td></td>
<td>2 hr</td>
<td>100</td>
<td>9,700</td>
</tr>
<tr>
<td>Modified zeolite</td>
<td>1 hr</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2 hr</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Acknowledgements
This material is based upon work supported by the National Science Foundation under Grant No.1033028.

http://greatidea.uprm.edu